Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338892

ABSTRACT

Previous computational and experimental studies showed that charges located at the surroundings of hydrogen bonds can exert two opposite effects on them: rupture or strengthening of the hydrogen bond. This work aims to generalize the effect of charges in different hydrogen-bonded systems and to propose a coherent explanation of this effect. For these purposes, 19 systems with intra- and intermolecular hydrogen bonds were studied computationally with DFT. The FT-IR spectra of the systems were simulated, and two energy components of the hydrogen bond were studied separately to determine their variation upon the presence of a charge: charge transfer and molecular overlap. It was determined that either the breaking or strengthening of the hydrogen bond can be favored one over the other, for instance, depending on the heteroatom involved in the hydrogen bond. In addition, it is showed that the strengthening of the hydrogen bond by the presence of a charge is directly related to the decrease in charge transfer between the monomers, which is explained by an increase in molecular overlapping, suggesting a more covalent character of the interaction. The understanding of how hydrogen bonds are affected by charges is important, as it is a key towards a strategy to manipulate hydrogen bonds at convenience.


Subject(s)
Electrons , Hydrogen , Hydrogen Bonding , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Infrared , Hydrogen/chemistry
2.
J Cachexia Sarcopenia Muscle ; 15(1): 401-411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38178557

ABSTRACT

BACKGROUND: Chronic inflammation and insulin resistance are highly prevalent in patients on maintenance haemodialysis (MHD) and are strongly associated with protein energy wasting. We conducted a pilot, randomized, placebo-controlled trial of recombinant human interleukin-1 receptor antagonist (IL-1ra) and pioglitazone to explore the safety, feasibility and efficacy for insulin-mediated protein metabolism in patients undergoing MHD. METHODS: Twenty-four patients were randomized to receive IL-1ra, pioglitazone or placebo for 12 weeks. Changes in serum inflammatory markers and insulin-mediated protein synthesis, breakdown and net balance in the whole-body and skeletal muscle compartments were assessed using hyperinsulinaemic-hyperaminoacidemic clamp technique at baseline and Week 12. RESULTS: Among 24 patients, median (interquartile range) age was 51 (40, 61), 79% were African American and 21% had diabetes mellitus. All patients initiated on intervention completed the study, and no serious adverse events were observed. There was a statistically significant decrease in serum high-sensitivity C-reactive protein in the pioglitazone group compared with placebo, but not in the IL-1ra group. No significant differences in the changes of whole-body or skeletal muscle protein synthesis, breakdown and net balance were found between the groups. CONCLUSIONS: In this pilot study, there were no statistically significant effects of 12 weeks of IL-1ra or pioglitazone on protein metabolism in patients on MHD. CLINICALTRIALS: gov registration: NCT02278562.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Renal Dialysis , Humans , Pioglitazone/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Pilot Projects , Insulin , Biomarkers
3.
Diabetes ; 73(1): 38-50, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37874653

ABSTRACT

Metabolic effects of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and not fully recapitulated by increasing endogenous GLP-1. We tested the hypothesis that GLP-1 receptor (GLP-1R) agonists exert weight loss-independent, GLP-1R-dependent effects that differ from effects of increasing endogenous GLP-1. Individuals with obesity and prediabetes were randomized to receive for 14 weeks the GLP-1R agonist liraglutide, a hypocaloric diet, or the dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin. The GLP-1R antagonist exendin(9-39) and placebo were administered in a two-by-two crossover study during mixed-meal tests. Liraglutide and diet, but not sitagliptin, caused weight loss. Liraglutide improved insulin sensitivity measured by HOMA for insulin resistance (HOMA-IR), the updated HOMA model (HOMA2), and the Matsuda index after 2 weeks, prior to weight loss. Liraglutide decreased fasting and postprandial glucose levels, and decreased insulin, C-peptide, and fasting glucagon levels. In contrast, diet-induced weight loss improved insulin sensitivity by HOMA-IR and HOMA2, but not the Matsuda index, and did not decrease glucose levels. Sitagliptin increased endogenous GLP-1 and GIP values without altering insulin sensitivity or fasting glucose levels, but decreased postprandial glucose and glucagon levels. Notably, sitagliptin increased GIP without altering weight. Acute GLP-1R antagonism increased glucose levels in all groups, increased the Matsuda index and fasting glucagon level during liraglutide treatment, and increased endogenous GLP-1 values during liraglutide and sitagliptin treatments. Thus, liraglutide exerts rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity that are not achieved by increasing endogenous GLP-1. ARTICLE HIGHLIGHTS: Metabolic benefits of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and are not fully achieved by increasing endogenous GLP-1 through dipeptidyl peptidase 4 (DPP-4) inhibition. We investigated weight loss-independent, GLP-1 receptor (GLP-1R)-dependent metabolic effects of liraglutide versus a hypocaloric diet or the DPP-4 inhibitor sitagliptin. GLP-1R antagonism with exendin(9-39) was used to assess GLP-1R-dependent effects during mixed meals. Liraglutide improved insulin sensitivity and decreased fasting and postprandial glucose prior to weight loss, and these benefits were reversed by exendin(9-39). GLP-1R agonists exert rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity not achieved by increasing endogenous GLP-1.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Insulin Resistance , Prediabetic State , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Dipeptidyl Peptidase 4/metabolism , Glucagon/metabolism , Prediabetic State/drug therapy , Diet, Reducing , Cross-Over Studies , Obesity/drug therapy , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/metabolism , Weight Loss
4.
BMC Nephrol ; 24(1): 134, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170244

ABSTRACT

INTRODUCTION: Intradialytic hypotension (IDH) is a common clinical complication and is associated with increased morbidity and mortality in patients undergoing maintenance hemodialysis (MHD). The pathogenesis of IDH has been attributed to the rapid reduction of plasma volume during hemodialysis and the inadequate compensatory mechanisms in response to hypovolemia, such as the lack of vasoconstriction. This may be due to the increased production of vasodilators, such as bradykinin. In this study we test the hypothesis that bradykinin B2 receptor blockade prevents intradialytic hypotension. METHODS: We performed a post-hoc analysis of a double-blind, placebo-controlled, randomized, 2 × 2 crossover clinical trial comparing the continuous infusion of icatibant, a bradykinin B2 receptor blocker, and placebo during hemodialysis. Icatibant or placebo was infused for 30 min before and during hemodialysis in 11 patients on MHD. RESULTS: Seven of the patients had IDH, defined as a reduction of systolic blood pressure equal to or greater than 20 mmHg during hemodialysis. Stratified analysis, based on the presence of IDH, revealed that icatibant prevented the decrease in blood pressure compared to placebo in patients with IDH [blood pressure at average nadir (2.5 h after hemodialysis): Placebo,114.3 ± 8.9 vs. icatibant, 125.6 ± 9.1 mmHg, mean ± S.E.M]. Icatibant did not affect blood pressure in the group of patients without IDH. CONCLUSION: Bradykinin B2 receptor blocker may prevent the occurrence of IDH. Further studies should evaluate the hemodynamic effects of icatibant during hemodialysis and the symptomatology associated with IDH.


Subject(s)
Hypotension , Receptors, Bradykinin , Humans , Receptors, Bradykinin/therapeutic use , Bradykinin/pharmacology , Bradykinin/therapeutic use , Hypotension/etiology , Hypotension/prevention & control , Renal Dialysis/adverse effects , Blood Pressure
5.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37159264

ABSTRACT

BackgroundCurrent studies suggest mitochondrial dysfunction is a major contributor to impaired physical performance and exercise intolerance in chronic kidney disease (CKD). We conducted a clinical trial of coenzyme Q10 (CoQ10) and nicotinamide riboside (NR) to determine their impact on exercise tolerance and metabolic profile in patients with CKD.MethodsWe conducted a randomized, placebo-controlled, double-blind, crossover trial comparing CoQ10, NR, and placebo in 25 patients with an estimated glomerular filtration rate (eGFR) of less than 60mL/min/1.73 m2. Participants received NR (1,000 mg/day), CoQ10 (1,200 mg/day), or placebo for 6 weeks each. The primary outcomes were aerobic capacity measured by peak rate of oxygen consumption (VO2 peak) and work efficiency measured using graded cycle ergometry testing. We performed semitargeted plasma metabolomics and lipidomics.ResultsParticipant mean age was 61.0 ± 11.6 years and mean eGFR was 36.9 ± 9.2 mL/min/1.73 m2. Compared with placebo, we found no differences in VO2 peak (P = 0.30, 0.17), total work (P = 0.47, 0.77), and total work efficiency (P = 0.46, 0.55) after NR or CoQ10 supplementation. NR decreased submaximal VO2 at 30 W (P = 0.03) and VO2 at 60 W (P = 0.07) compared with placebo. No changes in eGFR were observed after NR or CoQ10 treatment (P = 0.14, 0.88). CoQ10 increased free fatty acids and decreased complex medium- and long-chain triglycerides. NR supplementation significantly altered TCA cycle intermediates and glutamate that were involved in reactions that exclusively use NAD+ and NADP+ as cofactors. NR decreased a broad range of lipid groups including triglycerides and ceramides.ConclusionsSix weeks of treatment with NR or CoQ10 improved markers of systemic mitochondrial metabolism and lipid profiles but did not improve VO2 peak or total work efficiency.Trial registrationClinicalTrials.gov NCT03579693.FundingNational Institutes of Diabetes and Digestive and Kidney Diseases (grants R01 DK101509, R03 DK114502, R01 DK125794, and R01 DK101509).


Subject(s)
Renal Insufficiency, Chronic , Humans , Middle Aged , Aged , Cross-Over Studies , Renal Insufficiency, Chronic/drug therapy , Triglycerides
6.
Lupus ; 32(6): 763-770, 2023 May.
Article in English | MEDLINE | ID: mdl-37105192

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) disproportionately affects individuals of African ancestry (AA) compared to European ancestry (EA). In the general population, high risk (HR) variants in the apolipoprotein L1 (APOL1) gene increase the risk of renal and hypertensive disorders in individuals of AA. Since SLE is characterized by an interferon signature and APOL1 expression is driven by interferon, we examined the hypothesis that APOL1 HR genotypes predominantly drive higher rates of renal and hypertensive-related comorbidities observed in SLE patients of AA versus those of EA. METHODS: We performed a retrospective cohort study in patients with SLE of EA and AA using a genetic biobank linked to de-identified electronic health records. APOL1 HR genotypes were defined as G1/G1, G2/G2, or G1/G2 and low risk (LR) genotypes as 1 or 0 copies of the G1 and G2 alleles. To identify renal and hypertensive-related disorders that differed in prevalence by ancestry, we used a phenome-wide association approach. We then used logistic regression to compare the prevalence of renal and hypertensive-related disorders in EA and AA patients, both including and excluding patients with the APOL1 HR genotype. In a sensitivity analysis, we examined the association of end stage renal disease secondary to lupus nephritis (LN-related ESRD) with ancestry and the APOL1 genotype. RESULTS: We studied 784 patients with SLE; 195 (24.9%) were of AA, of whom 27 (13.8%) had APOL1 HR genotypes. Eighteen renal and hypertensive-related phenotypes were more common in AA than EA patients (p-value ≤ 1.4E-4). All phenotypes remained significantly different after exclusion of patients with APOL1 HR genotypes, and most point odds ratios (ORs) decreased only slightly. Even among ORs with the greatest decrease, risk for AA patients without the APOL1 HR genotype remained significantly elevated compared to EA patients. In the sensitivity analysis, LN-related ESRD was more prevalent in SLE patients of AA versus EA and AA patients with the APOL1 HR genotype versus LR (p-value < .05 for both). CONCLUSION: The higher prevalence of renal and hypertensive disorders in SLE patients of AA compared to those of EA is not fully explained by the presence of APOL1 high risk variants.


Subject(s)
Apolipoprotein L1 , Hypertension , Kidney Failure, Chronic , Lupus Erythematosus, Systemic , Humans , Apolipoprotein L1/genetics , Black or African American/genetics , Genetic Predisposition to Disease , Genotype , Hypertension/epidemiology , Hypertension/genetics , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/genetics , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Retrospective Studies , Risk Factors
7.
J Ren Nutr ; 33(2): 316-325, 2023 03.
Article in English | MEDLINE | ID: mdl-36270479

ABSTRACT

OBJECTIVE: Chronic kidney disease (CKD) is associated with decreased anabolic response to insulin contributing to protein-energy wasting. Targeted metabolic profiling of oral glucose tolerance testing (OGTT) may help identify metabolic pathways contributing to disruptions to insulin response in CKD. METHODS: Using targeted metabolic profiling, we studied the plasma metabolome response in 41 moderate-to-severe nondiabetic CKD patients and 20 healthy controls at fasting and 2 hours after an oral glucose load. We used linear mixed modeling with random intercepts, adjusting for age, gender, race/ethnicity, body weight, and batch to assess heterogeneity in response to OGTT by CKD status. RESULTS: Mean estimated glomerular filtration rate among CKD participants was 38.9 ± 12.7 mL/min per 1.73 m2 compared to 87.2 ± 17.7 mL/min per 1.73 m2 among controls. Glucose ingestion induced an anabolic response resulting in increased glycolysis products and a reduction in a wide range of metabolites including amino acids, tricarboxylic acid cycle intermediates, and purine nucleotides compared to fasting. Participants with CKD demonstrated a blunted anabolic response to OGTT evidenced by significant changes in 13 metabolites compared to controls. The attenuated metabolome response predominant involved mitochondrial energy metabolism, vitamin B family, and purine nucleotides. Compared to controls, CKD participants had elevated lactate:pyruvate (L:P) ratio and decreased guanosine diphosphate:guanosine triphosphate ratio during OGTT. CONCLUSION: Metabolic profiling of OGTT response suggests a broad disruption of mitochondrial energy metabolism in CKD patients. These findings motivate further investigation into the impact of insulin sensitizers and mitochondrial targeted therapeutics on energy metabolism in patients with nondiabetic CKD.


Subject(s)
Insulin Resistance , Renal Insufficiency, Chronic , Humans , Glucose Tolerance Test , Insulin Resistance/physiology , Insulin , Glucose , Metabolome , Blood Glucose/metabolism
8.
medRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38196612

ABSTRACT

Background: Incretins are regulators of insulin secretion and glucose homeostasis that are metabolized by dipeptidyl peptidase-4 (DPP-4). Moderate-severe CKD may modify incretin release, metabolism, or response. Methods: We performed 2-hour oral glucose tolerance testing (OGTT) in 59 people with non-diabetic CKD (eGFR<60 ml/min per 1.73 m2) and 39 matched controls. We measured total (tAUC) and incremental (iAUC) area under the curve of plasma total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic polypeptide (GIP). Fasting DPP-4 levels and activity were measured. Linear regression was used to adjust for demographic, body composition, and lifestyle factors. Results: Mean eGFR was 38 ±13 and 89 ±17ml/min per 1.73 m2 in CKD and controls. GLP-1 iAUC and GIP iAUC were higher in CKD than controls with a mean of 1531 ±1452 versus 1364 ±1484 pMxmin, and 62370 ±33453 versus 42365 ±25061 pgxmin/ml, respectively. After adjustment, CKD was associated with 15271 pMxmin/ml greater GIP iAUC (95% CI 387, 30154) compared to controls. Adjustment for covariates attenuated associations of CKD with higher GLP-1 iAUC (adjusted difference, 122, 95% CI -619, 864). Plasma glucagon levels were higher at 30 minutes (mean difference, 1.6, 95% CI 0.3, 2.8 mg/dl) and 120 minutes (mean difference, 0.84, 95% CI 0.2, 1.5 mg/dl) in CKD compared to controls. There were no differences in insulin levels or plasma DPP-4 activity or levels between groups. Conclusion: Incretin response to oral glucose is preserved or augmented in moderate-severe CKD, without apparent differences in circulating DPP-4 concentration or activity. However, neither insulin secretion nor glucagon suppression are enhanced.

9.
Lupus Sci Med ; 9(1)2022 11.
Article in English | MEDLINE | ID: mdl-36414333

ABSTRACT

OBJECTIVE: Patients with SLE frequently have debilitating fatigue and reduced physical activity. Intermuscular adipose tissue (IMAT) accumulation is associated with reduced physical exercise capacity. We hypothesised that IMAT is increased in patients with SLE and associated with increased fatigue, reduced physical activity and increased inflammation. METHODS: In a cross-sectional study, 23 patients with SLE and 28 control participants were evaluated. IMAT was measured in the calf muscles using sequential T 1-weighted MRI. Patient-reported physical activity and fatigue were measured and a multiplex proteomic assay was used to measure markers and mediators of inflammation. RESULTS: IMAT accumulation (percentage of IMAT area to muscle area) was significantly higher in SLE versus control participants (7.92%, 4.51%-13.39% vs 2.65%, 1.15%-4.61%, median, IQR, p<0.001) and remained significant after adjustment for age, sex, race and body mass index (p<0.001). In patients with SLE, IMAT accumulation did not differ significantly among corticosteroid users and non-users (p=0.48). In the study cohort (patients and controls), IMAT was positively correlated with self-reported fatigue score (rho=0.52, p<0.001) and inversely correlated with self-reported walking distance (rho=-0.60, p<0.001). Several markers of inflammation were associated with IMAT accumulation in patients with SLE, and gene ontology analysis showed significant enrichment for pathways associated with macrophage migration and activation in relation to IMAT. CONCLUSION: Patients with SLE have greater IMAT accumulation than controls in the calf muscles. Increased IMAT is associated with greater fatigue and lower physical activity. Future studies should evaluate the effectiveness of interventions that improve muscle quality to alleviate fatigue in patients with SLE.


Subject(s)
Lupus Erythematosus, Systemic , Proteomics , Humans , Cross-Sectional Studies , Lupus Erythematosus, Systemic/complications , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Fatigue/etiology , Fatigue/metabolism , Inflammation
10.
Lupus Sci Med ; 9(1)2022 11.
Article in English | MEDLINE | ID: mdl-36376015

ABSTRACT

OBJECTIVE: SLE is more prevalent in populations of African (AA) than European ancestry (EA) and leucopenia is common. A homozygous variant in ACKR1 (rs2814778-CC) is associated with lower white cell counts; the variant is common in AA but not EA populations. We hypothesised that in SLE: (1) leucopenia is more frequent in patients of AA than EA, and (2) the ACKR1-CC genotype accounts for the higher frequency of leucopenia in AA patients. METHODS: We performed a retrospective cohort study in patients with SLE at a tertiary care system. Ancestry was defined by genetic principal components. We compared the rate of leucopenia, thrombocytopenia and anaemia between (a) EA and AA patients, and (b) ACKR1-CT/TT and CC genotype in AA patients. RESULTS: The cohort included 574 patients of EA and 190 of AA; ACKR1-CC genotype was common in AA (70%) but not EA (0%) patients. Rates of leucopenia for ancestry and genotype were AA 60.0% vs EA 36.8 % (p=1.9E-08); CC 67.7% vs CT/TT 42.1% (p=9.8E-04). The rate of leucopenia did not differ by ancestry comparing EA patients versus AA with CT/TT genotype (p=0.59). Thrombocytopenia (22.2% vs 13.2%, p=0.004) and anaemia (88.4% vs 66.2%, p=3.7E-09) were more frequent in AA patients but were not associated with ACKR1 genotype (p=0.82 and p=0.84, respectively). CONCLUSIONS: SLE of AA had higher rates of anaemia, leucopenia, and thrombocytopenia than those of EA; only the difference in leucopenia was explained by ACKR1-CC genotype. This genotype could affect clinical practice.


Subject(s)
Anemia , Lupus Erythematosus, Systemic , Thrombocytopenia , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Genetic Predisposition to Disease , Retrospective Studies , Thrombocytopenia/complications , Thrombocytopenia/epidemiology
11.
J Am Heart Assoc ; 11(11): e024388, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35621206

ABSTRACT

Background Elevated plasma levels of alpha-aminoadipic acid (2-AAA) have been associated with the development of type 2 diabetes and atherosclerosis. However, the nature of the association remains unknown. Methods and Results We identified genetic determinants of plasma 2-AAA through meta-analysis of genome-wide association study data in 5456 individuals of European, African, and Asian ancestry from the Framingham Heart Study, Diabetes Prevention Program, Jackson Heart Study, and Shanghai Women's and Men's Health Studies. No single nucleotide polymorphisms reached genome-wide significance across all samples. However, the top associations from the meta-analysis included single-nucleotide polymorphisms in the known 2-AAA pathway gene DHTKD1, and single-nucleotide polymorphisms in genes involved in mitochondrial respiration (NDUFS4) and macrophage function (MSR1). We used a Mendelian randomization instrumental variable approach to evaluate relationships between 2-AAA and cardiometabolic phenotypes in large disease genome-wide association studies. Mendelian randomization identified a suggestive inverse association between increased 2-AAA and lower high-density lipoprotein cholesterol (P=0.005). We further characterized the genetically predicted relationship through measurement of plasma 2-AAA and high-density lipoprotein cholesterol in 2 separate samples of individuals with and without cardiometabolic disease (N=98), and confirmed a significant negative correlation between 2-AAA and high-density lipoprotein (rs=-0.53, P<0.0001). Conclusions 2-AAA levels in plasma may be regulated, in part, by common variants in genes involved in mitochondrial and macrophage function. Elevated plasma 2-AAA associates with reduced levels of high-density lipoprotein cholesterol. Further mechanistic studies are required to probe this as a possible mechanism linking 2-AAA to future cardiometabolic risk.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 2 , Female , Humans , 2-Aminoadipic Acid/genetics , Atherosclerosis/genetics , China , Cholesterol, HDL , Cholesterol, LDL , Genome-Wide Association Study , Ketoglutarate Dehydrogenase Complex/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors , Triglycerides
12.
Kidney Res Clin Pract ; 41(1): 14-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35108768

ABSTRACT

Sarcopenia, defined as decrease in muscle function and mass, is common in patients with moderate to advanced chronic kidney disease (CKD) and is associated with poor clinical outcomes. Muscle mitochondrial dysfunction is proposed as one of the mechanisms underlying sarcopenia. Patients with moderate to advanced CKD have decreased muscle mitochondrial content and oxidative capacity along with suppressed activity of various mitochondrial enzymes such as mitochondrial electron transport chain complexes and pyruvate dehydrogenase, leading to impaired energy production. Other mitochondrial abnormalities found in this population include defective beta-oxidation of fatty acids and mitochondrial DNA mutations. These changes are noticeable from the early stages of CKD and correlate with severity of the disease. Damage induced by uremic toxins, oxidative stress, and systemic inflammation has been implicated in the development of mitochondrial dysfunction in CKD patients. Given that mitochondrial function is an important determinant of physical activity and performance, its modulation is a potential therapeutic target for sarcopenia in patients with kidney disease. Coenzyme Q, nicotinamide, and cardiolipin-targeted peptides have been tested as therapeutic interventions in early studies. Aerobic exercise, a well-established strategy to improve muscle function and mass in healthy adults, is not as effective in patients with advanced kidney disease. This might be due to reduced expression or impaired activation of peroxisome proliferator-activated receptor-gamma coactivator 1α, the master regulator of mitochondrial biogenesis. Further studies are needed to broaden our understanding of the pathogenesis of mitochondrial dysfunction and to develop mitochondrial-targeted therapies for prevention and treatment of sarcopenia in patients with CKD.

13.
Am J Physiol Renal Physiol ; 322(1): F68-F75, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34843657

ABSTRACT

Circulating cell-free mitochondrial DNA (ccf-mtDNA) may induce systemic inflammation, a common condition in chronic kidney disease (CKD), by acting as a damage-associated molecular pattern. We hypothesized that in patients with moderate to severe CKD, aerobic exercise would reduce ccf-mtDNA levels. We performed a post hoc analysis of a multicenter randomized trial (NCT01150851) measuring plasma concentrations of ccf-mtDNA at baseline and 2 and 4 mo after aerobic exercise and caloric restriction. A total of 99 participants had baseline ccf-mtDNA, and 92 participants completed the study. The median age of the participants was 57 yr, 44% were female and 55% were male, 23% had diabetes, and 92% had hypertension. After adjusting for demographics, blood pressure, body mass index, diabetes, and estimated glomerular filtration rate, median ccf-mtDNA concentrations at baseline, 2 mo, and 4 mo were 3.62, 3.08, and 2.78 pM for the usual activity group and 2.01, 2.20, and 2.67 pM for the aerobic exercise group, respectively. A 16.1% greater increase per month in ccf-mtDNA was seen in aerobic exercise versus usual activity (P = 0.024), which was more pronounced with the combination of aerobic exercise and caloric restriction (29.5% greater increase per month). After 4 mo of intervention, ccf-mtDNA increased in the aerobic exercise group by 81.6% (95% confidence interval: 8.2-204.8, P = 0.024) compared with the usual activity group and was more marked in the aerobic exercise and caloric restriction group (181.7% increase, 95% confidence interval: 41.1-462.2, P = 0.003). There was no statistically significant correlation between markers of oxidative stress and inflammation with ccf-mtDNA. Our data indicate that aerobic exercise increased ccf-mtDNA levels in patients with moderate to severe CKD.NEW & NOTEWORTHY The effects of prolonged exercise on circulating cell-free mitochondrial DNA (ccf-mtDNA) have not been explored in patients with chronic kidney disease (CKD). We showed that 4-mo aerobic exercise is associated with an increase in plasma ccf-mtDNA levels in patients with stages 3 or 4 CKD. These changes were not associated with markers of systemic inflammation. Future studies should determine the mechanisms by which healthy lifestyle interventions influence biomarkers of inflammation and oxidative stress in patients with CKD.


Subject(s)
Caloric Restriction , Cell-Free Nucleic Acids/genetics , DNA, Mitochondrial/genetics , Exercise , Healthy Lifestyle , Renal Insufficiency, Chronic/therapy , Aged , Biomarkers/blood , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/blood , Female , Humans , Inflammation Mediators/blood , Male , Middle Aged , Oxidative Stress , Pilot Projects , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/genetics , Severity of Illness Index , Time Factors , Treatment Outcome , United States , Up-Regulation
15.
Curr Opin Nephrol Hypertens ; 30(3): 369-376, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33767065

ABSTRACT

PURPOSE OF REVIEW: : Sarcopenia, defined as decreased muscle mass or function, is prevalent in chronic kidney disease (CKD) increasing the risk of mobility impairment and frailty. CKD leads to metabolic acidosis (MA) and retention of uremic toxins contributing to insulin resistance and impaired muscle mitochondrial energetics. Here we focus on the central role of muscle mitochondrial metabolism in muscle function. RECENT FINDINGS: : Mitochondrial dysfunction underlies muscle wasting and poor physical endurance in CKD. Uremic toxins accumulate in muscle disrupting mitochondrial respiration and enzymes. Changes in mitochondrial quantity, quality, and oxidative capacity contribute to mobility impairment in CKD. Major determinants of muscle mitochondrial function are kidney function, inflammation, and oxidative stress. In CKD, MA is the major determinant of muscle mitochondrial function. Metabolomics reveals defects in pathways linked to mitochondrial energy metabolism and acid-base homeostasis underlying insulin resistance in CKD. SUMMARY: : Decreased mitochondrial capacity and quality control can impair muscle function contributing to decreased physical endurance. MA augments insulin resistance perpetuating the catabolic state underlying muscle wasting in CKD. Further studies are needed to investigate if targeting of MA improves muscle mitochondrial function and insulin resistance translating into meaningful improvements in physical endurance.


Subject(s)
Acidosis , Renal Insufficiency, Chronic , Acidosis/metabolism , Humans , Mitochondria/pathology , Muscle, Skeletal/metabolism , Muscles/metabolism , Renal Insufficiency, Chronic/metabolism , Sarcopenia
16.
Nanoscale Adv ; 3(3): 767-780, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133839

ABSTRACT

Hot carriers generated by plasmonic excitations have recently opened up new avenues in photocatalysis. The transfer of these energetic carriers to adjacent molecules can promote chemical transformations that are important for hydrogen generation by water splitting, CO2 reduction and degradation of organic pollutants. Here, we have developed and optimised a plasmonic hot-carrier catalytic system based on silica nanoparticles decorated with plasmonic gold nanoparticles as a source of hot carriers, equipped with platinum nanoclusters as co-catalyst for the enhancement of hot-carrier extraction. The latter plays a triple role by providing: a surface favourable for molecular adsorption; hot-electron generation near the nanoclusters due to field enhancement effects and electron momentum relaxation facilitating the electron transfer across the metal surface, exactly where molecules are adsorbed. The combination of plasmonic and catalytic metals in nano-heterostructured devices provides a new platform for photocatalytic processes and is of significant interest for future solar-based clean technologies.

17.
Mastology (Online) ; 31: 1-8, 2021.
Article in English | LILACS-Express | LILACS | ID: biblio-1253259

ABSTRACT

Oncoplastic techniques in breast cancer treatment allow increasing indications of breast-conserving surgery and improving cosmetic results. Breast tumors located at the superior edge of the upper quadrant or at the upper inner quadrant represent a challenge for conservative surgery due to insufficient breast thickness and risk of skin involvement. We present a modified Burow's triangle advancement flap for breast-conserving surgery in patients with breast tumors at these locations. This retrospective observational study analyzed 8 out of 213 patients submitted to major oncoplastic breast procedures, who underwent breast-conserving surgery with matrix rotation mammaplasty, using a modified Burow's triangle advancement flap. All patients were treated in public and private health systems in Santiago, Chile. The median age at diagnosis was 47 years. The average initial tumor size was 5.9 cm, and the mean excised breast weight was 117 g. Patients required neither symmetrization nor displacement of the nipple-areola complex. Only one patient had a minor complication (wound dehiscence). During follow-up, no local recurrences were reported. We conclude that the modified Burow's triangle advancement flap is a safe and effective technique to manage tumors at this complex location. It provides adequate oncological margins, good cosmetic results, and contralateral symmetry, with complication rates similar to those of standard conservative surgery

18.
Am J Physiol Renal Physiol ; 319(5): F885-F894, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32985237

ABSTRACT

Patients with end-stage kidney disease on maintenance hemodialysis commonly develop protein-energy wasting, a syndrome characterized by nutritional and metabolic abnormalities. Nutritional supplementation and exercise are recommended to prevent protein-energy wasting. In a 6-mo prospective randomized, open-label, clinical trial, we reported that the combination of resistance exercise and nutritional supplementation does not have an additive effect on lean body mass measured by dual-energy X-ray absorptiometry. To provide more mechanistic data, we performed a secondary analysis where we hypothesized that the combination of nutritional supplementation and resistance exercise would have additive effects on muscle protein accretion by stable isotope protein kinetic experiments, muscle mass by MRI, and mitochondrial content markers in muscle. We found that 6 mo of nutritional supplementation during hemodialysis increased muscle protein net balance [baseline: 2.5 (-17.8, 13.0) µg·100 mL-1·min-1 vs. 6 mo: 43.7 (13.0, 98.5) µg·100 mL-1·min-1, median (interquartile range), P = 0.04] and mid-thigh fat area [baseline: 162.3 (104.7, 226.6) cm2 vs. 6 mo: 181.9 (126.3, 279.2) cm2, median (interquartile range), P = 0.04]. Three months of nutritional supplementation also increased markers of mitochondrial content in muscle. Although the study is underpowered to detected differences, the combination of nutritional supplementation and exercise failed to show further benefit in protein accretion or muscle cross-sectional area. We conclude that long-term nutritional supplementation increases the skeletal muscle anabolic effect, the fat cross-sectional area of the thigh, and markers of mitochondrial content in skeletal muscle.


Subject(s)
Exercise/physiology , Homeostasis/physiology , Kidney Failure, Chronic/metabolism , Muscle Proteins/metabolism , Renal Dialysis/adverse effects , Body Composition/physiology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Nutritional Status/physiology , Proteostasis/physiology , Renal Dialysis/methods
19.
J Am Soc Nephrol ; 31(11): 2573-2587, 2020 11.
Article in English | MEDLINE | ID: mdl-32764136

ABSTRACT

BACKGROUND: CKD induces loss of muscle proteins partly by suppressing muscle protein synthesis. Muscles of mice with CKD have increased expression of nucleolar protein 66 (NO66), as do muscle biopsy specimens from patients with CKD or those undergoing hemodialysis. Inflammation stimulates NO66 expression and changes in NF-κB mediate the response. METHODS: Subtotal nephrectomy created a mouse model of CKD with BUN >80 mg/dl. Crossing NO66flox/flox with MCK-Cre mice bred muscle-specific NO66 (MCK-NO66) knockout mice. Experiments assessed the effect of removing NO66. RESULTS: Muscle-specific NO66 knockout in mice blocks CKD-induced loss of muscle mass and improves protein synthesis. NO66 suppression of ribosomal biogenesis via demethylase activity is the mechanism behind these responses. In muscle cells, expression of NO66, but not of demethylase-dead mutant NO66, decreased H3K4me3 and H3K36me3 and suppressed pre-rRNA expression. Knocking out NO66 increased the enrichment of H3K4me3 and H3K36me3 on ribosomal DNA. In primary muscle cells and in muscles of mice without NO66, ribosomal RNA, pre-rRNA, and protein synthesis all increased. CONCLUSIONS: CKD suppresses muscle protein synthesis via epigenetic mechanisms that NO66 mediates. Blocking NO66 could suggest strategies that counter CKD-induced abnormal muscle protein catabolism.


Subject(s)
Dioxygenases/metabolism , Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Protein Biosynthesis/genetics , Renal Insufficiency, Chronic/complications , Adult , Aged , Animals , Cell Line , DNA, Ribosomal , Dioxygenases/genetics , Disease Models, Animal , Epigenesis, Genetic , Female , Gene Expression , Histone Demethylases/genetics , Histones/genetics , Humans , Interferon-gamma/pharmacology , Interleukin-6/genetics , Interleukin-6/pharmacology , Male , Mice , Mice, Knockout , Middle Aged , Muscle Proteins/genetics , NF-kappa B/metabolism , Nephrectomy , RNA, Messenger/metabolism , Renal Dialysis , Renal Insufficiency, Chronic/therapy , SKP Cullin F-Box Protein Ligases/genetics , Signal Transduction , Tripartite Motif Proteins/genetics , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases/genetics
20.
Clin J Am Soc Nephrol ; 15(7): 926-936, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32591419

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with CKD suffer from frailty and sarcopenia, which is associated with higher morbidity and mortality. Skeletal muscle mitochondria are important for physical function and could be a target to prevent frailty and sarcopenia. In this study, we tested the hypothesis that mitochondrial dysfunction is associated with the severity of CKD. We also evaluated the interaction between mitochondrial function and coexisting comorbidities, such as impaired physical performance, intermuscular adipose tissue infiltration, inflammation, and oxidative stress. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Sixty-three participants were studied, including controls (n=21), patients with CKD not on maintenance hemodialysis (CKD 3-5; n=20), and patients on maintenance hemodialysis (n=22). We evaluated in vivo knee extensors mitochondrial function using 31P magnetic resonance spectroscopy to obtain the phosphocreatine recovery time constant, a measure of mitochondrial function. We measured physical performance using the 6-minute walk test, intermuscular adipose tissue infiltration with magnetic resonance imaging, and markers of inflammation and oxidative stress in plasma. In skeletal muscle biopsies from a select number of patients on maintenance hemodialysis, we also measured markers of mitochondrial dynamics (fusion and fission). RESULTS: We found a prolonged phosphocreatine recovery constant in patients on maintenance hemodialysis (53.3 [43.4-70.1] seconds, median [interquartile range]) and patients with CKD not on maintenance hemodialysis (41.5 [35.4-49.1] seconds) compared with controls (38.9 [32.5-46.0] seconds; P=0.001 among groups). Mitochondrial dysfunction was associated with poor physical performance (r=0.62; P=0.001), greater intermuscular adipose tissue (r=0.44; P=0.001), and increased markers of inflammation and oxidative stress (r=0.60; P=0.001). We found mitochondrial fragmentation and increased content of dynamin-related protein 1, a marker of mitochondrial fission, in skeletal muscles from patients on maintenance hemodialysis (0.86 [0.48-1.35] arbitrary units (A.U.), median [interquartile range]) compared with controls (0.60 [0.24-0.75] A.U.). CONCLUSIONS: Mitochondrial dysfunction is due to multifactorial etiologies and presents prior to the initiation of maintenance hemodialysis, including in patients with CKD stages 3-5.


Subject(s)
Mitochondria/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiopathology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/therapy , Adipose Tissue/diagnostic imaging , Adult , Aged , Dynamins/metabolism , Female , Glomerular Filtration Rate , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Muscle Strength , Phosphocreatine/metabolism , Physical Functional Performance , Quadriceps Muscle/pathology , Renal Dialysis , Severity of Illness Index , Walk Test
SELECTION OF CITATIONS
SEARCH DETAIL
...